Chapter 6

TIME-MARCHING METHODS
FOR ODE’S

In the following we use u as for the general representation of the dependent variable.
If we wish to emphasize that our analysis is being carried out in eigenspace, then w
will be used instead. Using the semi-discrete approach, we reduce our PDE to a set
of coupled ODE’s represented in general by Eq. 4.3. However, for the purpose of this
chapter, we need only consider the scalar case

CCZZ—? =u = F(u,t) (6.1)
Our first task is to find numerical approximations that can be used to carry out the
time integration of Eq. 6.1 to some given accuracy, where accuracy can be measured
either in a local or a global sense. We then face a further task concerning the numerical
stability of the resulting methods, but we postpone such considerations to the next
chapter.

In Chapter 2, we introduced the convention that the n subscript, or the (n)
superscript, always points to a discrete time value, and h represents the time interval
At. Combining this notation with Eq. 6.1 gives

u, = F, = Fu,.t,) ; t=nh

Often we need a more sophisticated notation for intermediate time steps involving
temporary calculations denoted by @, u, etc. For these we use the notation

ﬂ;l‘i‘a = ~n+a = F(lpta,tn + ah)

The choice of u’ or F' to express the derivative in a scheme is arbitrary. They are
both commonly used in the literature on ODFE'’s.

75

76 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

The methods we study are to be applied to linear or nonlinear ODE’s, but the
methods themselves are formed by linear combinations of the dependent variable and
its derivative at various time intervals. They are represented conceptually by

Upg1 = f(ﬁlu;_H, Boul , Bp_1u! 1, Qo Uy g,) (6.2)

With an appropriate choice of the o’s and ’s, these methods can be constructed
to give a local Taylor series accuracy of any order. The methods are said to be
explicit if §1 = 0 and implicit otherwise. An explicit method is one in which the new
predicted solution is only a function of known data, for example, u/,, u!_;. u,, and
u,—1 for a method using two previous time levels, and therefore the time advance is
simple. For an implicit method, the new predicted solution is also a function of the
41+ As we shall see, for systems of
ODE’s and nonlinear problems, implicit methods require more complicated strategies
to solve for u,q than explicit methods.

time derivative at the new time level, that is, u

6.1 Converting Time-Marching Methods to OAE ’s

Examples of some very common forms of methods used for time-marching general

ODE’s are:

Upt1 = Uy + hu!, (6.3)
Upg1 = Up + hu (6.4)
and
&n—}—l = U, + hufn
1 . .
Upn41 = §[un + tpg1 + hu;_}_l] (65)

According to the conditions presented under Eq. 6.2, the first and third of these
are examples of explicit methods. We refer to them as the Euler method and the
MacCormack predictor-corrector method, respectively. The second is implicit and
referred to as the implicit (or backward) Euler method.

These methods are simple recipes for the time advance of a function in terms of its
value and the value of its derivative, at given time intervals. The material presented
in Chapter 4 develops a way to evaluate such methods by introducing the concept of
the representative equation

du

i Au + ae’ (6.6)

6.2. SOLUTION OF LINEAR OAE’S WITH CONSTANT COEFFICIENTS 77

written here in terms of the dependent variable, u. The value of this equation arises
from the fact that it permits us to convert a linear time-marching method into a
linear ordinary difference equation (OAE). The latter are subject to a whole body of
analysis that is similar in many respects to. and just as powerful as, the theory of or-
dinary differential equations, (ODE’s). We next consider examples of this conversion
process and then go into the general theory on solving OAE ’s.

Apply the simple explicit Euler scheme, Eq. 6.3, to Eq. 6.6. There results

U1 = Uy + R(Au, + ae“hn)
or
U1 — (1 + Ah)u, = haet"™" (6.7)

Eq. 6.7 is a linear ordinary OAE with constant coefficients expressed in terms of the
dependent variable u,, and the independent variable n. As another example, applying
the implicit Euler method, Eq. 6.4, to Eq. 6.6, we find

Upp1 = Up + h(AunH + e“h(”“))
or
(1 = Ah)uppr — u, = hett . gethn (6.8)
As a final example, the predictor-corrector sequence given in Eq. 6.5 gives

Upyr — (1 + Ah)u, = ahe!hm
1 1 1
——(1+ AR)Upgr + Upyr — zu, = —aqhet 1) (6.9)
2 2 2
which is a coupled set of linear OAE ’s with constant coefficients.
Now we need to develop techniques for analyzing these difference equations so
that we can compare the merits of the time-marching methods that generated them.

6.2 Solution of Linear OAE’s With Constant Co-
efficients

The techniques for solving linear difference equations with constant coefficients is as
well developed as that for ODE’s and the theory follows a remarkably parallel path.
This is demonstrated by repeating some of the developments in Section 4.3, but for
difference rather than differential equations.

78 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

6.2.1 First- and Second-Order Difference Equations
First-Order Equations

The simplest nonhomogeneous OAE of interest is given by the single first-order equa-
tion

Upy1 = OU, + ab” (6.10)

where o, a. and b are, in general, complex parameters. The independent variable is
now n rather than ¢, and since the equations are linear and have constant coefficients
(i.e., are essentially autonomous), ¢ is not a function of either n or u. The exact
solution of Eq. 6.10 1s

ab”

b—o

where ¢; is a constant determined by the initial conditions. In terms of the initial

u, = c1(0)" +

value of u it can be written
b — o™

b—o

U, = Uugo" + a

Just as in the development of Eq. 4.10, one can readily show that the solution of the
defective case, (b= o),
Upy1 = OU, + ac”

1s
U, = |ug + anc=t|o"

This can all be easily verified by substitution.

Second-Order Equations
The homogeneous form of a second-order difference equation is given by
Upyo + a1tpy1 + agu, =0 (6.11)

Instead of the differential operator D = j—t used for ODE’s, we use for OAE’s the
difference operator £ (commonly referred to as the displacement or shift operator)
and defined formally by the relations

Upy1 = Eun s Ungk = Ekun
. Further notice that the displacement operator also applies to exponents, thus

6.2. SOLUTION OF LINEAR OAE’S WITH CONSTANT COEFFICIENTS 79

where a can be any fraction or irrational number.

The roles of D and F are the same insofar as once they have been introduced to
the basic equations the value of u(t) or u, can be factored out. Thus Eq. 6.11 can
now be re-expressed in an operational notion as

(E* 4+ a1 E + ag)u, =0 (6.12)

which must be zero for all u,,. Eq. 6.12 is known as the operational form of Eq. 6.11.
The operational form contains a characteristic polynomial P(F) which plays the same
role for difference equations that P(D) played for differential equations; that is, its
roots determine the solution to the OAE. In the analysis of OAE’s, we label these
roots o1, 03, - - -, etc, and refer to them as the o-roots. They are found by solving the
equation P(o) = 0. In the simple example given above, there are just two o roots
and in terms of them the solution can be written

U, = c1(01)" + ca(o9)" (6.13)
where ¢; and ¢; depend upon the initial conditions. The fact that Eq. 6.13 is a
solution to Eq. 6.11 for all ¢; , ¢ and n should be verified by substitution.

6.2.2 Special Cases of Coupled First-Order Equations
A Complete System

Coupled, first-order, linear homogeneous difference equations have the form

u(lnH) = cuu(ln) + clgugn)
u(2n+1) = c21u(1n) + c22u(2n) (6.14)
which can also be written
0 =Cu A I O I AT K o= [e
Upyr = LU 5 Up = [ul ;s U] ; = lew 9

The operational form of Eq. 6.14 can be written

(e — B) 12 Hm](n):[c_E]]ﬂn:O

C21 (622 - E) Uz

which must be zero for all u; and uy. Again we are led to a characteristic polynomial,
this time having the form P(E) = det [C — F I]. The o-roots are found from

P(o) = det [(CH -) 1z] =0

(&3] (022 - U)

80 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

Obviously the o} are the eigenvalues of €' and, following the logic of Section 4.3,
if x are its eigenvectors, the solution of Eq. 6.14 is

2

t?n = Z Ck(O'k)n;k

k=1

where ¢ are constants determined by the initial conditions.

A Defective System

The solution of OAE’s with defective eigensystems follows closely the logic in Section
4.3.2 for defective ODE’s. For example, one can show that the solution to

ﬂn+1 o ﬂn
ﬂn+1 = 1 g ﬁn
Upt1 1 o Up,

1s

U, = UgO
Uy, = [”&0 + ﬂona_l] o”
u, = [uo + tgno~! + ton(n — 1)0'_2]0'n (6.15)

6.3 Solution of the Representative OAE’s

6.3.1 The Operational Form and its Solution

Examples of the nonhomogeneous, linear, first-order ordinary difference equations,
produced by applying a time-marching method to the representative equation, are
given by Eqs. 6.7 to 6.9. Using the displacement operator, F, these equations can be
written

[E — (14 Ah)|u, = h - ae"™™ (6.16)

[(1 =AR)E —1u, = h- E-ae"™" (6.17)

E —(1+)\h)][f&] . [
~la+aE E-1 ul| — 0

2

1E] - et (6.18)

6.3. SOLUTION OF THE REPRESENTATIVE OAE’S 81

All three of these equations are subsets of the operational form of the representa-

tive OAE

P(E)u, = Q(E) - ae"™" (6.19)

which is produced by applying time-marching methods to the representative ODE, Eq.
4.33. We can express in terms of Eq. 6.19 all manner of standard time-marching meth-
ods having multiple time steps and various types of intermediate predictor-corrector
families. The terms P(F) and Q(F) are polynomials in F referred to as the charac-
teristic polynomial and the particular polynomial, respectively.

The general solution of Eq. 6.19 can be expressed as

K uh
un = Y cx(ow)" + ae"" Q)

k=1

(6.20)

where o, are the K roots of the characteristic polynomial, P(c) = 0. When determi-
nants are involved in the construction of P(F) and Q(F), as would be the case for
Eq. 6.18, the ratio Q(F)/P(F) can be found by Kramer’s rule. Keep in mind that
for methods such as in Eq. 6.18 there are multiple (two in this case) solutions, one
for u, and @, and we are usually only interested in the final solution u,. Notice also,
the important subset of this solution which occurs when p = 0. representing a time
invariant particular solution, or a steady state. In such a case

& " Q(1)
un—k;f:k(ak) +a-m

6.3.2 Examples of Solutions to Time-Marching OAE’s

As examples of the use of Eqgs. 6.19 and 6.20. we derive the solutions of Eqgs. 6.16 to
6.18. For the explicit Euler method, Eq. 6.16, we have

P(E) = E—1-Mh

QIE) = h (6.21)
and the solution of its representative OAE follows immediately from Eq. 6.20:
U, = ¢ (1—|—)\h)n—|—ae“}m-L
S et — 1 — \h

For the implicit Euler method, Eq. 6.17, we have

P(E) = (1=Xh)E—1
Q(E) = hE (6.22)

82 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

SO

=) et e
R T V) N § R Y Py

In the case of the coupled predictor-corrector equations. Eq. 6.18. one solves for the
final family w,, (one can also find a solution for the intermediate family), and there
results

E —(1+ Ah)
L4 A)E E-1

2

P(E):det[]:E(E—1—Ah—%vh2)
Q(E) = det [_%(wa]];E] _ B+ 140

)
The o-root is found from

N =

|
Plo) = a<a— =M — §A2h2) ~0

which has only one nontrivial root (¢ = 0 is simply a shift in the reference index).
The complete solution can therefore be written

Lh(ert +1+ Ah)
erh —1 — b — IN2p?

1 n
U, = 1 (1 + \h + 5)\2h2) + qethn . (6.23)

6.4 The)\ — o Relation

6.4.1 Establishing the Relation

We have now been introduced to two basic kinds of roots. the A-roots and the o-roots.
The former are the eigenvalues of the A matrix in the ODE’s found by space differ-
encing the original PDE, and the latter are the roots of the characteristic polynomial
in a representative OAE found by applying a time-march method to the represen-
tative ODE. There is a fundamental relation between the two which can be used to
identify many of the essential properties of a time-march method. This relation is
first demonstrated by developing it for the explicit Euler method.

First we make use of the semi-discrete approach to find a system of ODE’s and
then express its solution in the form of Eq. 4.26. Remembering that ¢ = nh. one can
write

n -

ut) = e (M) Tt en () Tt ear(MH) Ty + PS. (6.24)

where for the present we are not interested in the form of the particular solution.
Now the explicit Euler method produces for each A-root, one o-root, which is given

6.4. THE A\ — o RELATION 33

by ¢ = 1 4+ Ah. So it we use the Euler method for the time advance of the ODFE’s,
the solution® of the resulting OAE is

—

u, = c1(o1)" ;1 +tem(on) Tw A+ 4 em(om)” ;M + P.S. (6.25)

where the ¢,, and the :;m in the two equations are identical and o, = (1 + A,h).

Comparing Eq. 6.24 and Eq. 6.25, we see a correspondance between o, and e*n".

Since the value of e* can be expressed in terms of the series

1 1 1
M =1+ AR+ NP4 AR AR
2 6 n!

the truncated expansion ¢ = 1 + Ah is a reasonable? approximation for small enough

Ah.

Suppose, instead of the Euler method, we use the leapfrog method for the time
advance, which is defined by

Upp1 = Up_q + 2k, (6.26)

Applying Eq. 6.6 to Eq. 6.26, we have the characteristic polynomial P(E) = FE? —
2AhE — 1, so that for every A the o must satisfy the relation

o2 — 2\, hoy, —1=0 (6.27)

Now we notice that each A produces two o-roots. For one of these (see the following
discussion of spurious roots for the other) we find

om = A h+ /1 + A2 A2 (6.28)

= 1+/\mh+%A;h2—%A;h4+--- (6.29)

On the basis of the isolation theorem, we now place this root, instead of (1 4+ A, k),
into Eq. 6.25 and the result is an O(h?) method with an error O(A*A?). The following
generalizes this concept.

1From the Isolation Theorem.

2The error is O(A%h?).

84 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

6.4.2 The Principal o-Root

Based on the above we make the follow observation.

Application of the same time-marching method to all of the equations
in the coupled A matrix of Eq. 4.6, always produces one o-root for
every A-root that satisfies the relation

(6.30)

_ 122 1 ki1 k k+1
0= 14 M+ A h o P +0(h)

where k is the order of the time-march method.

We refer to the root that has the above property as the principal o-root, and designate
it (0,,)1. The above property can be stated regardless of the details of the time-march

method, knowing only that its leading error is O(hk"'l).

6.4.3 Spurious o-Roots

We saw from Eq. 6.27 that the A — o relation for the leapfrog method produces two
o-roots for each A\. One of these we identified as the principal root which always
has the property given in 6.30. The other is referred to as a spurious o-root and
designated (0,,)s. In general, the A — o relation produced by a time-march scheme
can result in multiple o-roots all of which, except for the principal one, are spurious.
All spurious roots are designated (o,,)r where k = 2.3,---. No matter whether a
o-root is principal or spurious, it is always some algebraic function of the product Ah.
To express this fact we use the notation o = o(Ah).

Spurious roots originate entirely from the numerical approximation of the time-
march method and have nothing to do with the ODE being solved. However, genera-
tion of spurious roots does not, in itself, make a method inferior. In fact, many very
accurate methods in practical use for integrating some forms of ODE have spurious
roots.

If a time-march method produces spurious o-roots, the solution for the OAE in
the form shown in Eq. 6.25 must be modified. Following again the message of the
Isolation Theorem. we have

n

Up = en(0)] T+ F 1 (Om)] Tm 4 -+ can(om)] Tar + P.S.

n

Fera(00)h T1 4+ Ca(Tn)s T 4+ + earaonr)l Tag

n

ters(o1)s @14 -+ Cma(0)n T + -+ cars(om)h T

+etc.. if there are more spurious roots (6.31)

6.4. THE A\ — o RELATION 85

It should be mentioned that methods with spurious roots are not self starting.
For example, if there is one spurious root to a method, all of the coefficients (¢,)2
in Eq. 6.31 must be initialized by some starting procedure. Presumably (i.e., if
one starts the method properly) the spurious coefficients are all initialized with very
small magnitudes, and presumably the magnitudes of the spurious roots themselves
are all less than one (see Chapter 7). Then the presence of spurious roots does not
contaminate the answer. That is, after some finite time (large n) the amplitude of
the error associated with the spurious roots are driven to zero.

6.4.4 One-Root Time-Marching Methods

There are a number of time-marching methods that produce only one o-root for each
A-root. We refer to them as one-root methods. They are also called one-step methods.
They have the significant advantage of being self-starting which carries with it the
very useful property that the time-step interval can be changed at will throughout
the marching process. Three one-root methods were analyzed in Section 6.3.2. A
popular method having this property, the so-called §-method, is given by the formula

Upg1 = Uy + h[(l — 0! + Gu;_l_l]

The #-method represents the explicit Euler (6 = 0), the trapezoidal (0 = %) and the
implicit Euler methods (6 = 1), respectively. Its A — o relation is

L+ (1—=0)\h
c=——
1 —0\h
It is instructive to compare the exact solutions to a set of ODE’s (with a complete
eigensystem) having time-invariant forcing terms, with the exact solution to the OAE
’s for one-root methods. These are

T:(t) = (ehh)n 51 + ot Cm (eA’"h)n :Zm + -4 CM(eAMh)n C;M + A_lf

u, = ci(o)" ;;1 + ot emlom)” :Zm + o+ em(om)” :;M + A_lf (6.32)

respectively. Notice that when ¢ and n = 0, these equations are identical, so that all
the constants, vectors, and matrices are identical except the u and the terms inside
the parentheses on the right hand sides. The only error made by introducing the time

march is the error that o makes in approximating e

86 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

6.5 Accuracy Measures of Time-Marching Meth-
ods

6.5.1 Local and Global Error Measures

There are two broad categories of errors that can be used to evaluate time-marching
methods. One is the error made in each time step. This is a local error such as that
found from a Taylor table analysis, see Section 3.4. It is usually used as the basis for
establishing the order of a method. The other is the error determined at the end of
a given event which has covered a specific interval of time composed of many time
steps. This is a global error. It is useful for comparing methods, as we shall see in
Chapter 8.

It is quite common to judge a time-march method on the basis of results found
from a Taylor table. However, a Taylor series analysis is a very limited tool for finding
the more subtle properties of a numerical time-marching method. For example, it is
of no use in:

e finding spurious roots.

e evaluating numerical stability and separating the errors in phase and amplitude.
e analyzing the particular solution of predictor-corrector combinations.

e finding the global error.

The latter three of these are of concern to us here, and to study them we make use
of the material developed in the previous sections of this chapter.

6.5.2 Local Accuracy of the Transient Solution (ery.|o|.er,)
Transient error

The particular choice of an error measure, either local or global. is to some extent
arbitrary. However, a necessary condition for the choice should be that the measure
can be used consistently for all methods. In the discussion of the A-o relation we
saw that all time-marching methods produce a principal o-root for every A-root that
exists in a set of linear ODE’s. Therefore. a very natural local error measure for the
transient solution is the value of the difference between solutions based on these two
roots. We designate this by ery and make the following definition

ery = M — o1

6.5. ACCURACY MEASURES OF TIME-MARCHING METHODS 87

Both terms are expanded in a Taylor series, and the error of the method is the first
nonvanishing term. The order of the method is the last power of Ah matched exactly.
This is similar to the error found from a Taylor table.

Amplitude and Phase Error

Suppose a A eigenvalue is imaginary. Such can indeed be the case when we study the
equations governing periodic convection which produces harmonic motion. For such
cases it is more meaningful to express the error in terms of amplitude and phase.
Let A = 1w where w is a real number representing a frequency. Then the numerical
method must produce a principal o-root that is complex and expressible in the form

o1 =0, +io; ~ et (6.33)

From this it follows that the local error in amplitude is measured by the deviation of

|o1| from unity, where
on] = Jo? + o?

and the local error in phase can be defined as the first nonvanishing term in a Taylor
series expansion of

er, = wh —tan"'(o;/0,) (6.34)

Amplitude and phase errors are important measures of the suitability of time-marching
methods used to study oscillating flows.

6.5.3 Local Accuracy of the Particular Solution (er),)

The numerical error in the particular solution is found by comparing the particular

solution of the ODE with that for the OAE. We have found these to be given by

P.S. = qett.
S (ODE) ae (,U _ /\)

and

Qe

P(enh)

respectively. For a measure of the local error in the particular solution we introduce
the definition

P-S-(OAE) = ae“t .

P.S.
ery, = h(p —X) ~08F) g (6.35)
P-S-(ODE)

88 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

The multiplication by h converts the error from a global measure to a local one, so
that the order of ery and er, are consistent. The multiplication by (x —), which is
arbitrary, is used to create a more uniform normalization. Eq. 6.35 can be written in
terms of the characteristic and particular polynomials as

er, = ¢, - {(,u -)\)Q(e“h) - P(e“h)} (6.36)

. lh(u - /\)]
¢ P(erh) 0

where

The value of ¢, is a method-dependent constant that is often equal to one. The error
measure is the first nonvanishing term in the Taylor series expansion. If the forcing
function is independent of time, y is equal to zero, and for this case, many numerical
methods generate an er, that is also zero.

The algebra involved in finding the order of er, can be quite tedious. However,
this order is quite important in determining the true order of a time-marching method
by the process that has been outlined. An illustration of this is given in the section
on Runge-Kutta methods.

6.5.4 Time Accuracy For Nonlinear Applications

In practice, time-marching methods are usually applied to nonlinear ODE’s, and it
is necessary that the advertised order of accuracy be valid for the nonlinear cases as
well as for the linear ones. A necessary condition for this to occur is that the local
accuracies of both the transient and the particular solutions be of the same order.
More precisely. a time-marching method is said to be of order & if

ery = ¢ - (/\h)k1+1 (6.37)
er, = cy- (Ah)F2t! (6.38)
where k& = smallest of(kq, k2) (6.39)

6.5.5 Global Accuracy

In contrast to the local error measures which have just been discussed, we can also
define global error measures. These are useful when we come to the evaluation of
time-marching methods for specific purposes. This subject is covered in Chapter 8
after our introduction to stability in Chapter 7.

Suppose we wish to compute some time-accurate phenomenon over a fixed interval
of time using a constant time step. We refer to such a computation as an “event”.

6.6. LINEAR MULTISTEP METHODS 89

Let T' be the fixed time of the event and & be the chosen step size. Then the required
number of time steps, is N, given by the relation

T =Nh

Global error in the transient

A natural extension of ery to cover the error in an entire event is given by

Ery = e — (ay(AR)Y (6.40)

Global error in amplitude and phase

If the event is periodic, we are more concerned with the global error in amplitude and
phase. These are given by how much

()’

deviates from unity, and the first nonvanishing term in the expansion of

Er, = N[wh —tan™! (%)] (6.41)
= wl — Ntan_l(ai/rar) (6.42)

Global error in the particular solution

Finally, the global error in the particular solution follows naturally by comparing the
solutions to the ODE and the OAE. It can be measured by

Q(e")

Er# = (:u -)‘) P(eﬂh)

—1

6.6 Linear Multistep Methods

In the previous sections, we have developed the framework of error analysis for time
advance methods and have randomly introduced a few methods without addressing
motivational, developmental or design issues. In the subsequent sections, we introduce
classes of methods along with their associated error analysis. We shall not spend much
time on development or design of these methods. since most of them have historic
origins from a wide variety of disciplines and applications. The Linear Multistep
Methods (LMM’s) are probably the most natural extension to time marching of the
space differencing schemes introduced in Chapter 3 and can be analyzed for accuracy
or designed using the Taylor Table approach of Section 3.4.

90 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

6.6.1 The General Formulation

When applied to the nonlinear ODE

i u' = F(u,t)

all linear multistep methods can be expressed® in the general form

1 1
Z akun+k:h Z ﬂan-I-k (643)

k=1-K k=1-K

where the notation for F'is defined in Section 6.1. The methods are said to be linear
because the a's and 3’s are independent of v and n. and they are said to be K-step
because K time-levels of data are required to march the solution one time-step. h.

When Eq. 6.43 is applied to the representative equation 4.30. and the result is
expressed in operational form. one finds

(ZI: akEk) Up = h(21: ﬂkE’“) (M, + aet™™) (6.44)

k=1-K k=1-K

We recall from Section 6.5.2 that a time-marching method when applied to the repre-
sentative equation must provide a o-root, labeled oy, that approximates e through
the order of the method. The condition referred to as consistency simply means that
o — 1 as h — 0, and it is certainly a necessary condition for the accuracy of any
time marching method. We can also agree that, to be of any value in time accuracy,
a method should at least be first-order accurate, that is ¢ — (1 + Ah) as h — 0. One
can show that these conditions are met by any method represented by Eq. 6.43 if

Zak:() and Z,Bk:Z(K—I—k—l)ak
k k

k

Since both sides of Eq. 6.43 can be multiplied by an arbitrary constant, these methods
are often “normalized” by requiring

Y B=1
P

Under this condition ¢, = 1 in Eq. 6.36.

3Note the shift in indexing between these equations and Eq. 6.2.

6.6. LINEAR MULTISTEP METHODS 91

6.6.2 Simple Examples

There are many special explicit and implicit forms of linear multistep methods. Two
well-known families of them, referred to as Adams-Bashforth (explicit) and Adams-
Moulton (implicit), can be designed using the Taylor Table approach of Section 3.4.
Three-step methods from these two families can be written in the following general
form

U1 = Un + (B + Bouy, + Borit, g + Bosug_y) (6.45)

A Taylor Table for Eq. 6.45 can be generated as

Uy hul h2 .y h3 .y R4 oyt
Un+1 1 1 % é 24
—hﬁﬂl;ﬁl —51 —51 —51% —51é
—h%goU;L —Bo
—hﬁ—1U;_1 —B1 —B1 —ﬁ—l% —ﬂ—1%
—hB_yu; —(=2)°By —(=2)'B-2 —(=2)’Bay —(-2)B_23

0 0 0 0 0

Table 3.1. Taylor table for Adams-Bashforth/Moulton three-step linear multistep
methods.
This leads to the linear system

11 1 171[h” 1
2.0 -2 41| 8 1
30 3 12]|8. | |1 (6.46)
40 —4 —32]| B 1

to solve for the f’s, resulting in a variety of methods of up to fourth-order accuracy.
With 3; # 0. the implicit Adams-Moulton family is obtained, while with 3; = 0, the
explicit Adams-Bashforth family is obtained. In the latter case, the 3’s are obtained

from
1 1 1 Bo 1
0 -2 —4 By | =11 (6.47)
0 3 12 B_s 1

and the maximum order attainable with a three-step method is third order.

92 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

A list of simple methods. some of which are very common in CFD applications,
is given below together with identifying names that are sometimes associated with
them. In the following material AB(n) and AM(n) are used as abbreviations for the
(n)th order Adams-Bashforth and (n)th order Adams-Moulton methods. One can
verify that the Adams type schemes given below satisfy Eqgs. 6.46 and 6.47 up to the
order of the method.

Explicit Methods

Upp1 = Uy + hul, Fuler
Upp1 = Up—1 + 2hul, Leapfrog
Unp1 = Uy + 3h [3u; —ul_ AB2

Unt1 = Up + 1}1_2[23“; — 16u,_; + 5u;_2] AB3

Implicit Methods

Uppr = Up + hu g Implicit Euler
Upp1 = Up + th [u; + u;_H] Trapezoidal (AM2)
Upy1 = %[411” — Up_1 + Qhu;_i_l] 2nd O Backward
Upg1 = Uy + o [5u;+1 + 8ul, — u;_l] AM3

6.6.3 Two-Step Linear Multistep Methods

High resolution CFD problems usually require very large data bases to store the
spatial information from which the time derivative is calculated. This limits the
interest in multistep methods to about two time levels. The most general two-step
linear multistep method (i.e., K=2 in Eq. 6.43), that is at least first-order accurate,
can be written as

(14 Ettngr = [(1+26)tn — €] + h|0ulyy + (1 — 0+ @), —pul, | (6.48)

where we have shifted our reference frame so that n 4 1 represents the most advanced
time level. Clearly the methods are explicit if § = 0 and implicit otherwise. A list of
methods contained in Eq. 6.48 is given in Table 6.1.

6.7. PREDICTOR-CORRECTOR METHODS 93

0 £ ¢ | Method | Order

0 0 0 | Euler | 1

1 0 0 Implicit Euler 1
1/2 0 0 Trapezoidal or AM2 2

1 1/2 0 2nd Order Backward 2
3/4 0 —1/4 Adams type 2
/3 —-1/2 —-1/3 Lees Type 2
/2 —=1/2 —-1/2 Two—step trapezoidal 2
5/9 —1/6 —2/9 A—contractive 2

0 -1/2 0 Leapfrog 2

0 0 1/2 AB2 2

0 -5/6 —1/3 Most accurate explicit 3
1/3 —1/6 0 Third-order implicit 3
5/12 0 1/12 AM3 3
/6 —1/2 —1/6 Milne 4

Table 6.1. Some linear one- and two-step methods, see Eq. 6.48.

One can show after a little algebra® that both er, and er, are reduced to 0(h?)
(i.e., the methods are 2nd-order accurate) if

1
s— ¢t — 0+ =
w=¢ t3

The class of all 3rd-order methods is determined by imposing the additional constraint

3
=20 — -
¢ 6

Finally a unique fourth-order method is found by setting § = —¢ = —¢/3 = %.

6.7 Predictor-Corrector Methods

There are a wide variety of predictor-corrector schemes created and used for a variety
of purposes. Their use in solving ODE’s is relatively easy to illustrate and understand.
Their use in solving PDE’s can be much more subtle and demands concepts® which
have no counterpart in the analysis of ODE’s.

4A Taylor table is ideal for this.
5Such as alternating direction, fractional-step, and hybrid methods.

94 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

Predictor-corrector methods constructed to time-march linear or nonlinear ODE’s
are composed of sequences of linear multistep methods, each of which is referred to
as a family in the solution process. There may be many families in the sequence, and
usually the final family has a higher Taylor-series order of accuracy than the inter-
mediate ones. Their use is motivated by ease of application and increased efficiency,
where measures of efficiency are discussed in the next two chapters.

A simple one-predictor, one-corrector example is given by

&n—}—a = U, + ath
Upy1 = Up+h [ﬂﬁm_a +~F, (6.49)

where the parameters a, 3 and 4 are arbitrary parameters to be determined. One
can analyze this sequence by applying it to the representative equation and using
the operational techniques outlined in Section 6.3. It is easy to show, following the
example leading to Eq. 6.23, that

P(E) = E*|[E—1-(y+B)Ah— aBA*h?] (6.50)
Q(E) = E*-h-[BE*+~+ af\h] (6.51)

Considering only local accuracy, one is led. by following the discussion in Section 6.5,
to the following observations. For the method to be second-order accurate both er)
and er, must be O(h?*). For this to hold for er, it is obvious from Eq. 6.50 that

1
T+B8=1 : a5:§

which provides two equations for three unknowns. The situation for er, requires some
algebra, but it is not difficult to show using Eq. 6.36 that the same conditions also
make it O(%*). One concludes, therefore, that the predictor-corrector sequence

Upta = Uy + ahul,
1 1y . 2a — 1
Upg1 = Up+ §h [(5) Uy yo + (-)u;] (6.52)

is a second-order accurate method for any a.

A classical predictor-corrector sequence is formed by following an Adams-Bashforth
predictor of any order with an Adams-Moulton corrector having an order one higher.
The order of the combination is then equal to the order of the corrector. If the order

of the corrector is (k), we refer to these as ABM(k) methods. The Adams-Bashforth-

Moulton sequence for k£ = 3 is
Upt1 = Uy + §h[3u; — u;_l]

h
Ut =ty o [Bill g+ Sul, —] (6.53)

6.8. RUNGE-KUTTA METHODS 95

Some simple, specific, second-order accurate methods are given below. The Gazdag
method. which we discuss in Chapter 8, is

. Lo, .
Upyr = un—|—§h[3u;—u’]
1 ~7 ~7
Upp1 = Up + 5/1 [un + un_H] (6.54)
The Burstein method, obtained from Eq. 6.52 with a = 1/2 is
. L,
Upyi/a = Up + §hun
Ung1 = Un+ Dl (6.55)
and. finally, MacCormack’s method, also discussed later. is

~ !
Upy1 = Up + huy,

1
Upy1 = §[un + f&n-}—l + hﬂ;_}_l] (656)

It should be pointed out that the last two sequences are only “skeletons” of the
methods used in application. The real power and convenience of the MacCormack
method. for example, does not emerge until it is presented for hyperbolic PDE’s.

6.8 Runge-Kutta Methods

There is a special subset of predictor-corrector methods, referred to as (one-step)
Runge-Kutta methods, that produce just one o-root for each A-root such that o(Ah)
corresponds to the Taylor series expansion of e* out through the order of the method
and then truncates. Thus for a Runge-Kutta method of order & (up to 4th order)

oc=1+Ah+ %/\Qh2 et %/\khk (6.57)

It is not particularly difficult to build this property into a method, but, as we pointed
out in Section 6.6.4, it is not sufficient to guarantee k’th order accuracy for the solution
of u' = F(u,t) or for the representative equation. To ensure k’th order accuracy, the
method must further satisfy the constraint that

er, = O(hF1) (6.58)

and this is much more difficult.

96 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

The most widely publicized Runge-Kutta process is the one that leads to the
fourth-order method. We present it below in some detail. It is usually introduced in
the form

ki = hF(ug, o)

ke = hF(ug+ fki.to+ ah)

ks = hF(ug+ Biki +y1ke. to+ anh)

ks = hF(ug+ PBoki + v2ka + 62ks. o + azh)

followed by
u(to + h) —ulto) = prks + poke + psks + paks (6.59)

However, we prefer to present it using predictor-corrector notation. Thus, a scheme
entirely equivalent to 6.59 is

Upta = Uy + Bhul,
Untay = Un+ Brhu, +y1hi,,
Unga, = Un+ Pohuy, + bt + bshi

Upy1 = Up + prhul, + ,ughun_i_a + ughun+al + y4hﬂ;+a2 (6.60)

Appearing in Eqgs. 6.59 and 6.60 are a total of 13 parameters which are to be
determined such that the method is fourth-order according to the requirements in
Eqgs. 6.57 and 6.58. First of all, the choices for the time samplings, a. a;, and a,, are
not arbitrary. They must satisfy the relations

a = [
Br+m
ay = By+7y2+ 02 (6.61)

Qq

The algebra involved in finding algebraic equations for the remaining 10 parameters
is not trivial, but the equations follow directly from finding P(F) and Q(F) and then
satisfying the conditions in Eqs. 6.57 and 6.58. Using Eq. 6.61 to eliminate the 3’s
we find from Eq. 6.57 the four conditions

pa A+ pe + ps +opa = 1 (1)
Mo + p3y + piaQg = 1/2 (2)
pzay + pa(ays + a16y) = 1/6 (3)
pa0Y1 62 = 1/24 (4)

(6.62)

6.8. RUNGE-KUTTA METHODS 97

These four relations guarantee that the five terms in o exactly match the first 5 terms
in the expansion of e*. To satisfy the condition that er, = O(k®), we have to fulfill
four more conditions

p20? + pzaf + paod = 1/3 (3)
/’LQGS + /’L3a:1)) + /’L4a§ = 1/4 (4) (6 63)
psa’y + pa(a’yy +aidy) = 1/12 (4) '
paaaryr + paco(ay, + ardy) = 1/8 (4)

The number in parentheses at the end of each equation indicates the order that is
the basis for the equation. Thus if the first 3 equations in 6.62 and the first equation
in 6.63 are all satisfied, the resulting method would be third-order accurate. Note
that only the first seven constraints must be satisfied for linear inhomogeneous ODE’s
Therefore, the method of analysis based on P(F) and Q(F) will not lead to the eighth
constraint.

There are eight equations in 6.62 and 6.63 which must be satisfied by the 10
unknowns. Since the equations are overdetermined, two parameters can be set arbi-
trarily. Several choices for the parameters have been proposed, but the most popular
one is due to Runge. It results in the “standard” fourth-order Runge-Kutta method
expressed in predictor-corrector form as

1

an+1/2 = U, + ahu;
N 1,
Upyi/2 = Up + §hun+1/2
Hn—}—l = U, + hﬂ;_i_l/z
1 ! ~f ~ 1 —
U = g+ o [+ 2(0 41y + Wy) + s (6.64)

Notice that this represents the simple sequence of conventional linear multistep meth-
ods referred to, respectively, as

Euler Predictor
FEuler Corrector
Leapfrog Predictor
Milne Corrector

= RK4

One can easily show that both the Burstein and the MacCormack methods given by
Eqgs. 6.55 and 6.56 are second-order Runge-Kutta methods, and third-order methods
can be derived from Egs. 6.60 by setting u4 = 0 and satisfying only Eqgs. 6.62 and
the first equation in 6.63. It is clear that for orders one through four. RK methods
of order k require k evaluations of the derivative function to advance the solution

98 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

one time step. We shall discuss the consequences of this in Chapter 8. Higher-order
Runge-Kutta methods can be developed, but they require more derivative evaluations
than their order. For example, a fifth-order method requires 6 evaluations to advance
the solution one step. In any event. storage requirements probably eliminate the
usefulness of the higher-order methods for CFD applications.

6.9 Implementation of Implicit Methods

We have presented a wide variety of time-marching methods and shown how to derive
their A — o relations. In the next chapter, we will see that these methods can have
widely different properties with respect to stability. This leads to various trade-
offs which must be considered in selcting a method for a specific application. Our
presentation of the time-marching methods in the context of a linear scalar equation
obscures some of the issues involved in implementing an implicit method for systems
of equations and nonlinear equations. These are covered in this Section.

6.9.1 Application to Systems of Equations

Consider first the numerical solution of our representative ODE

d
d—? = Au + ae* (6.65)

using the implicit Euler method. Following the steps outlined in Section 6.1, we
obtained

(1 = Ah)uppr —uy, = hett . gt (6.66)

Solving for u,4; gives

Upig = ——(u, + he' - ae!™ 6.67
=Ty h(+) (6.67)
This calculation does not seem particularly onerous in comparison with the applica-
tion of an explicit method to this ODE, requiring only an additional division.
Now let us apply the implicit Euler method to our generic system of equations
given by
du

- = Au — f(t) (6.68)

where u and [are vectors and we still assume that A is not a function of u or . Now
the equivalent to Eq. 6.66 is

(1 = hA)uppr —up, = hf(t+ h) (6.69)

6.9. IMPLEMENTATION OF IMPLICIT METHODS 99

Ungr = (1 — RA) [un + hf(t +)] (6.70)

Therefore, the simple division required in the scalar case has been replaced by the
solution of a linear system of equations. For our one-dimensional examples, the
system of equations which must be solved is tridiagonal, and hence its solution is
inexpensive, but in multidimensions the bandwidth can be very large. In general,
the cost per time step of an implicit method is much larger than that of an explicit
method. The primary area of application of implicit methods is in the solution of

stiff ODE’s, as we shall see in Chapter 8.

6.9.2 Application to Nonlinear Equations

Now consider the general nonlinear scalar ODE given by

du

== Flu.t) (6.71)

Application of the implicit Euler method gives
Up41 = Up + F(un+1:tn+1) (672)

This is a nonlinear OAFE. As an example, consider the nonlinear ODE

du 1
d—? +5ut =0 (6.73)

solved using implicit Euler time marching which gives

1
Upt1 + h§ui+1 = Uy, (6.74)

which requires a nontrivial method to solve for u, ;. However, in practice, the “initial
guess” for this nonlinear problem is quite close to the solution, since the “initial guess”
is simply the solution at the previous time step, which implies that a linearization
approach may be quite successful. There are several different approaches one can take
to solving this nonlinear difference equation. An iterative method. such as Newton’s
method (see below), can be used. Alternatively, the nonlinear ODE, Eq. 6.71, can be
linearized as described in the next Section.

100 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

6.9.3 Local Linearization for Scalar Equations
General Development

Let us start the process of local linearization by considering Eq. 6.71. In order to
implement the linearization, we expand F'(u,?) about some reference point in time.
Designate the reference value by ¢, and the corresponding value of the dependent
variable by u,. A Taylor series expansion about these reference quantities gives

F(u,t) = Flu,,t,)+ (g—f) (u—un)—l—(aa—f) (t—t,)

L(*F , (PF
+§(W)n(“ mun) (@u@t)n(u ~uni ~ k)

1{0%F 9
5(@)71@_%) 4. (6.75)

On the other hand, the expansion of u(t) in terms of the independent variable ¢ is

u(t) = up, + (¢ - tn)(g—?) + %(t — tn)Q(%) 4o (6.76)

If ¢ is within & of ¢,, both (¢t — ¢,)* and (u — u,)* are O(h*), and Eq. 6.75 can be

written

Fu,t)=F, + (g—f) (u—u,)+ (88_];) (t —1,) + O(h?) (6.77)

Notice that this is an expansion of the derivative of the function. Thus, relative to the
order of expansion of the function, it represents a second-order-accurate, locally-linear
approximation to F'(u,t) that is valid in the vicinity of the reference station ¢, and
the corresponding u, = u(t,). With this we obtain the locally (in the neighborhood
of t,) time-linear representation of Eq. 6.71, namely

du oF oF oF 5
T (a—u)n“ ¥ (F” - (a—u)n“n) ¥ (W)n“) OW) (65

6.9. IMPLEMENTATION OF IMPLICIT METHODS 101

Implementation of the Trapezoidal Method

As an example of how such an expansion can be used, consider the mechanics of
applying the trapezoidal method for the time march of Eq. 6.71. The trapezoidal
method is given by

1

where we write hO(h?) to emphasize that the method is second order accurate. Using
Eq. 6.77 to evaluate F,11 = F(tp41,tn41), one finds

du ol

Note that the O(h?) term within the brackets (which is due to the local linearization)
is multiplied by & and therefore is the same order as the hO(h?) error from the

Upa1 = Up + h [F + (8F> (U1 — up) + R (8F> + O(hQ) + Fn] + hO(h206.80)

Trapezoidal Method. The use of local time linearization updated at the end of each
time step, and the trapezoidal time march, combine to make a second-order-accurate
numerical integration process. There are. of course, other second-order implicit time-
marching methods that can be used. The important point to be made here is that
local linearization updated at each time step has not reduced the order of accuracy of
a second-order time-marching process.

A very useful reordering of the terms in Eq. 6.80 results in the expression

OF L(OF\ ,
=32 Jammsmr W(2E) + 0w s

which is now in the delta form which will be formally introduced in Section 12.6. In
many fluid mechanic applications the nonlinear function F' is not an explicit function
of t. In such cases the partial derivative of F'(u) with respect to ¢ is zero and Eq. 6.81
simplifies to the second-order accurate expression

ll - —h(aF>]Aun =hF, ; O(h?) (6.82)
Ju

Notice that the RHS is extremely simple. It is the product of A and the RHS of

the basic equation evaluated at the previous time step. In this example the basic

equation was the simple scalar equation 6.71, but for our applications, it is generally

the space-differenced form of the steady-state equation of some fluid flow problem.
A numerical time-march procedure using Eq. 6.82 is usually implemented as fol-

lows:

102 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

1. Solve for the elements of A F),, store them in an array say R, and save u,.

2. Solve for the elements of the matrix multiplying Aw, and store in some appro-
priate manner making use of sparseness or bandedness of the matrix if possible.
Let this storage area be referred to as B.

3. Solve the coupled set of linear equations
BAu, = R
for Au,. (Very seldom does one find B! in carrying out this step).
4. Find u,4q by adding Au, to u,, thus
Unt1 = Aty + Uy
The solution for u,41 probably is stored such that it overwrites the value of u,

and the process is repeated.

Implementation of the Implicit Euler Method

We have seen that the 1’st order Euler implicit method can be written

Upg1 = Up + hFpr 7 O(R) (6.83)

if we introduce Eq. 6.78 into this method, rearrange terms, and remove the explicit
dependency on time, we arrive at the form

ll - h(aa—fj)]Aun =hF, ; O(h) (6.84)

n

We see that the only difference between the implementation of the trapezoidal method
and the implicit Euler method is the factor of % in the brackets of the left side of Eqs.
6.82 and 6.84. Omission of this factor degrades the method in time accuracy by one
order of h.

Newton’s Method

Consider the limit h — oc of Eq. 6.84 obtained by dividing both sides by h and
setting 1/h = 0. There results

6.9. IMPLEMENTATION OF IMPLICIT METHODS 103

oF
— (—6u)nAun = F, (6.85)
or
ary 17"

This is the well-known Newton method for finding the roots of a nonlinear equation
F(u) = 0. The fact that it has quadratic convergence is verified by a glance at Eqgs.
6.75 and 6.76 (remember the dependence on ¢ has been eliminated for this case). By
quadratic convergence, we mean that the error after a given iteration is proportional
to the square of the error at the previous iteration, where the error is the difference
between the current solution and the converged solution. Quadratic convergence is
thus a very powerful property. Use of a finite value of h in Eq. 6.84 leads to linear
convergence, i.e., the error at a given iteration is some multiple of the error at the
previous iteration. The reader should ponder the meaning of letting h — oc for the
trapezoidal method. given by Eq. 6.82.

6.9.4 Local Linearization for Coupled Sets of Nonlinear Equa-
tions

In order to present this concept, let us consider an example involving some sim-
ple boundary-layer equations. We choose the Falkner-Skan equations from classical
boundary-layer theory. Our task is to apply the implicit trapezoidal method to the
equations

&f o Ef ar*\
ﬁ-l-fﬁﬁ'ﬂ(l—(%))—o (6.87)

Here f represents a dimensionless stream function and [is a scaling factor.
First of all we reduce Eq. 6.87 to a set of first-order nonlinear equations by the
transformations

_df _df
Tz Ty

This gives the coupled set of three nonlinear equations

us = f (6.88)

U1

104 CHAPTER 6. TIME-MARCHING METHODS FOR ODE’S

uy = Flz—ulu;g—ﬁ(l—u%)
U/2 = F2:u1

and these can be represented in vector notation as

du 2z -
T F(u) (6.90)
Now we seek to make the same local expansion that derived Eq. 6.78, except that
this time we are faced with a nonlinear vector function, rather than a simple nonlinear
scalar function. The required extension requires the evaluation of a matrix, called
the Jacobian matrix. Let us refer to this matrix as A. It is derived from Eq. 6.90 by
the following process

A= (aij) = 6FZ /8uj (691)

For the general case involving a third order matrix this is

oF” 9k 2R

du du du

5Fy oF, OF
A= 352 52 Fu (6.92)

OF: 0Fy 0F:

8’U.1 8’[1.2 8’[1.3
The expansion of F(J) about some reference state u, can be expressed in a way
similar to the scalar expansion given by eq 6.75. Omitting the explicit dependency

on the independent variable t, and defining F,, as F(Jn) one has ©

—

F(i) = Fo + Ay (0 —) + O(h?) (6.93)

where ¢ — ¢, and the argument for O(h?) is the same as in the derivation of Eq. 6.76.
Using this we can write the local linearization of Eq. 6.90 as

‘fl—? = Au+ [13 - Anﬁn] +0(h?) (6.94)
|
“constant”

5The Taylor series expansion of a vector contains a vector for the first term, a matrix times a
vector for the second term, and tensor products for the terms of higher order.

6.9. IMPLEMENTATION OF IMPLICIT METHODS 105

which is a locally-linear, second-order-accurate approximation to a set of coupled
nonlinear ordinary differential equations that is valid for ¢ < ¢, + h. Any first- or
second-order time-marching method, explicit or implicit, could be used to integrate
the equations without loss in accuracy with respect to order. The number of times,
and the manner in which, the termsin the Jacobian matrix are updated as the solution
proceeds depends, of course, on the nature of the problem.

Returning to our simple boundary-layer example, which is given by Eq. 6.89. we
find the Jacobian matrix to be

— Usg 25112 — U1
A=| 1 0 0 (6.95)
0 1 0

The student should be able to derive results for this example that are equivalent to
those given for the scalar case in Eq. 6.81. Thus for the Falkner-Skan equations the
trapezoidal method results in

L+ bus), —Bh(uz), (),][(Awn), ~ (unus), — A1 —),
-3 1 0 (Aug)y | =h (u1),, 6.96)
0 _% 1 (Aus), (uz),

We find Jn-}—l from Al_jn + 'Jn, and the solution is now advanced one step. Re-evaluate
the elements using u,4+1 and continue. Without any iterating within a step advance,
the solution will be second-order-accurate in time.

